Analisis Pan-Sharpening untuk Meningkatkan Kualitas Spasial Citra Penginderaan Jauh dalam Klasifikasi Tata Guna Tanah

  • Iswari Nur Hidayati Fakultas Geografi Universitas Gadjah Mada
  • Eni Susanti Prodi Kartografi dan Penginderaan Jauh Universitas Gadjah Mada
  • Westi Utami Sekolah Tinggi Pertanahan Nasional
Keywords: Pan-sharpening, brovey, gram-schmidt, image transformation

Abstract

Pan-sharpened transformation methods improve the quality of spatial resolution remote sensing imagery. This study used pan-sharpened analysis to improve the quality of image. Pan-sharpening method was used to increase spatial quality of each research object. The aims of reserach were to study image sharpening using Quickbird imagery (multispectral band and pancromatic band) and to calculate overall accuracy of land use classification base on pan-sharpened imagery classification. This study used Brovey transformation and Gram-Schmidt transformation for pan-sharpened process. The classification system used Suharyadi Classification scheme (2001) for urban areas. The results showed that Brovey transformation better than gram-schmidt transformation for the elements of texture, shape, pattern, height, and shading. Gram-Schmidt method was more suitable for the analysis concerned to its original color combination associated with the color or hue of the elements of visual interpretation. The accuracy of the study is  90.70%.

Sebagian besar proses citra pan-sharpened yang diperoleh dengan formulasi berbagai algoritma yang sudah ditentukan merupakan representasi antara hubungan karakteristik dari resolusi spektral untuk meningkatkan kualitas secara visual dari citra itu sendiri. Hasil dari beberapa citra pan-sharpened tersebut menjadikan salah satu alternative untuk analisis visual citra penginderaan jauh. Penelitian ini mencoba melakukan analisis pan-sharpened untuk mendapatkan hasil yang lebih maksimal dalam berbagai kenampakan untuk setiap tata guna tanah perkotaan. Pemanfaatan pan-sharpening untuk meningkatkan kualitas spasial dari tiap objek penelitian akan dikaji agar mendapatkan masukan dalam pengembangan metode pan-sharpening untuk klasifikasi tata guna tanah di perkotaan. Penelitian ini menggunakan metode transformasi Brovey dan Gram-Schimdt untuk proses pan-sharpened. Sistem klasifikasi yang digunakan adalah sistem Klasifikasi Suharyadi (2001) untuk daerah perkotaan. Hasil penelitian ini menunjukkan bahwa metode Brovey lebih baik dalam penyajian untuk tekstur, bentuk, pola, tinggi, dan bayangan. Metode Gram-Schimdt lebih cocok untuk analisis yang lebih mementingkan perpaduan warna (komposit) aslinya terkait dengan warna ataupun rona dalam unsur interpretasi visual. Hasil akurasi penelitian penggunaan tanah yang digunakan dalam penelitian ini sebesar 90,70%. 

 

Downloads

Download data is not yet available.

References

Anderson, B.J.R. et al., 2001. A Land Use And Land Cover Classification System For Use With Remote Sensor Data. , 2001.
Al-Wassai, F.A., Kalyankar, N.V., and Al-Zuky, A.A. 2011. Aritmetic and Frequency Filtering Methods of Pixel-Based Image Fusion Techniques. Computer Vision and Pattern Recognition. http://arxiv.org/ftp/arxiv/papers/1107/1107.3348.pdf
B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTFtailored multiscale fusion of high-resolution MS and Pan imagery,” Photogrammetry. Engineering, Remote Sensing., vol. 72, no. 5, pp. 591–596, May 2006.
Basaeed, E., Bhaskar, H. & Al-mualla, M., Comparative Analysis of Pan-sharpening Techniques on DubaiSat-1 images.
Belfiore, O.R. et al., 2016. Application of different pan-sharpening methods on worldview-3 images. , 11(1), hal.490–496.
Danoedoro, Projo.2012. Pengantar Penginderaan Jauh Digital. Yogyakarta : ANDI
Han, S.S., Li, H.T., Gu, H.Y. 2008. The Study on Image Fusion for High Spatial Resolution Remote Sensing Image. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing.
Helmy, A.K., Nasr, A.H. & Sciences, S., 2010. Assessment and Evaluation of Different Data Fusion Techniques. , 4(4), hal.107–115.
Hernández, C. et al., 2014. Data fusion for high spatial resolution LAI estimation. Information Fusion, 16, hal.59–67. Available at: http://dx.doi.org/10.1016/j.inffus.2012.04.001.
Maglione, P., Parente, C. & Vallario, A., 2016. Pan-sharpening WorldView-2?: IHS , Brovey and Zhang methods in comparison. , 8(2), hal.673–679.
Maurer, T. 2013. How to Pan-Sharpen Image Using The Gram-Schimdt Pan-Sharpen Method – A Recipe. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. Volume XL-1/W1. ISPRS Hannover Workshop 2013. 21 – 24 May 2013. Hannover. Germany.
Narumalani, S., Mishra, D.R. & Rothwell, R.G., 2004. Change detection and landscape metrics for inferring anthropogenic processes in the greater EFMO area. Remote Sensing of Environment, 91(3–4), hal.478–489.
Palubinskas , Gintautas. 2016. Image fusion methods based on a linear mixing model of multispectral remote sensing data. Imaging & Geospatial Technology Forum. ASPRS 2016 Annual Conference. Fort Worth, Texas USA
Ranchin, T., Aiazzi, B., Alperone, L., Baronti, S., Wald, L. 2003. Image fusion-the ARSIS concept and successful implementation schemes. ISPRS Journal of Photogrammetry and Remote Sensing. 58, pp. 4-18.
Rajendran, V., Varghese, D., Annadurai, S., Vaithiyanathan, V., and Thamotharan, B. 2012. A Case Study on Satellite Image Fusion Techniques. Research Journal of Information Technology 4 (2):pp 71-78.
Singh, M., Singh, S. & Gupta, S., 2014. An information fusion based method for liver classification using texture analysis of ultrasound images. Information Fusion, 19, hal.91–96. Available at: http://dx.doi.org/10.1016/j.inffus.2013.05.007.
Sitanggang, G., 2006. Teknik dan metode fusi ( pansharpening ) data alos ( avnir-2 dan prism ) untuk identifikasi penutup lahan / tanaman pertanian sawah. , hal.33–49.
Suharyadi. 2001. Bahan Ajar Penginderaan Jauh Untuk Studi Kota, Fakultas Geografi. Universitas Gajah Mada, Yogyakarta
T. M. Tu, P. S. Huang, C. L. Hung, and C. P. Chang, “A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 4, pp. 309–312, Oct. 2004.
Vrabel, J. 1996. Multispectral Imagery Band Sharpening Study. Photogrammetric Engineering Remote Sensing. 62(9).pp. 1075-1083
Wang, Z., D. Ziou, and C. Armenakis. 2005. A Comparative Analysis of Image Fusion Methods, IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no.6, pp. 1391–1402.
Zhang, Yun. 2008. Methods for Image Fusion Quality Assessment – A Riview, Comparison and Analysis. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing.
CROSSMARK
Published
2018-09-18
DIMENSIONS
How to Cite
Hidayati, I. N., Susanti, E., & Utami, W. (2018). Analisis Pan-Sharpening untuk Meningkatkan Kualitas Spasial Citra Penginderaan Jauh dalam Klasifikasi Tata Guna Tanah. BHUMI: Jurnal Agraria Dan Pertanahan, 3(1), 122–135. https://doi.org/10.31292/jb.v3i1.95
Section
Articles